Mechanical Physics - Laws of Motion
Those preparing for board and competitive exams State Board, CBSE, ICSE , IGCSE, MHT-CET & NEET

Mechanical Physics - Laws of Motion free download
Those preparing for board and competitive exams State Board, CBSE, ICSE , IGCSE, MHT-CET & NEET
Laws of Motion
Intuitive concept of force
Inertia
Newton's first law of motion
momentum and Newton's second law of motion
impulse; Newton's third law of motion
Law of conservation of linear momentum and its applications
Equilibrium of concurrent forces
Static and kinetic friction
laws of friction
rolling friction
lubrication
Dynamics of uniform circular motion:
Centripetal force, examples of circular motion (vehicle on a level circular road, vehicle on banked road)
SUMMARY
1. Aristotle’s view that a force is necessary to keep a body in uniform motion is wrong. A force is necessary in practice to counter the opposing force of friction.
2. Galileo extrapolated simple observations on motion of bodies on inclined planes, and arrived at the law of inertia. Newton’s first law of motion is the same law rephrased thus: “Everybody continues to be in its state of rest or of uniform motion in a straight line, unless compelled by some external force to act otherwise”. In simple terms, the First Law is “If external force on a body is zero, its acceleration is zero”.
3. Momentum (p ) of a body is the product of its mass (m) and velocity (v) : p = m v
4. Newton’s second law of motion : The rate of change of momentum of a body is proportional to the applied force and takes place in the direction in which the force acts. (a) The second law is consistent with the First Law (F = 0 implies a = 0) (b) It is a vector equation (c) It is applicable to a particle, and also to a body or a system of particles, provided F is the total external force on the system and a is the acceleration of the system as a whole. (d) F at a point at a certain instant determines a at the same point at that instant. That is the Second Law is a local law; a at an instant does not depend on the history of motion.
5. Impulse is the product of force and time which equals change in momentum. The notion of impulse is useful when a large force acts for a short time to produce a measurable change in momentum. Since the time of action of the force is very short, one can assume that there is no appreciable change in the position of the body during the action of the impulsive force.
6. Newton’s third law of motion: To every action, there is always an equal and opposite reaction In simple terms, the law can be stated thus : Forces in nature always occur between pairs of bodies. Force on a body A by body B is equal and opposite to the force on the body B by A. Action and reaction forces are simultaneous forces. There is no cause-effect relation between action and reaction. Any of the two mutual forces can be called action and the other reaction. Action and reaction act on different bodies and so they cannot be cancelled out. The internal action and reaction forces between different parts of a body do, however, sum to zero.
7. Law of Conservation of Momentum The total momentum of an isolated system of particles is conserved. The law follows from the second and third law of motion.
8. Friction Frictional force opposes (impending or actual) relative motion between two surfaces in contact. It is the component of the contact force along the common tangent to the surface in contact.
POINTS TO PONDER
1. Force is not always in the direction of motion. Depending on the situation, F may be along v, opposite to v, normal to v or may make some other angle with v. In every case, it is parallel to acceleration.
2. If v = 0 at an instant, i.e. if a body is momentarily at rest, it does not mean that force or acceleration are necessarily zero at that instant. For example, when a ball thrown upward reaches its maximum height, v = 0 but the force continues to be its weight mg and the acceleration is not zero but g.
3. Force on a body at a given time is determined by the situation at the location of the body at that time. Force is not ‘carried’ by the body from its earlier history of motion. The moment after a stone is released out of an accelerated train, there is no horizontal force (or acceleration) on the stone, if the effects of the surrounding air are neglected. The stone then has only the vertical force of gravity.
4. In the second law of motion F = m.a, F stands for the net force due to all material agencies external to the body. a is the effect of the force. ma should not be regarded as yet another force, besides F.
5. The centripetal force should not be regarded as yet another kind of force. It is simply a name given to the force that provides inward radial acceleration to a body in circular motion. We should always look for some material force like tension, gravitational force, electrical force, friction, etc as the centripetal force in any circular motion.
6. Static friction is a self-adjusting force up to its limit µs N (fs ≤ µs N). Do not put fs = µs N without being sure that the maximum value of static friction is coming into play.
7. The familiar equation mg = R for a body on a table is true only if the body is in equilibrium. The two forces mg and R can be different (e.g. a body in an accelerated lift). The equality of mg and R has no connection with the third law.
8. The terms ‘action’ and ‘reaction’ in the third Law of Motion simply stand for simultaneous mutual forces between a pair of bodies. Unlike their meaning in ordinary language, action does not precede or cause reaction. Action and reaction act on different bodies.
9. The different terms like ‘friction’, ‘normal reaction’ ‘tension’, ‘air resistance’, ‘viscous drag’, ‘thrust’, ‘buoyancy’ ‘weight’ ‘centripetal force’ all stand for ‘force’ in different contexts. For clarity, every force and its equivalent terms encountered in mechanics should be reduced to the phrase ‘force on A by B’.
10. For applying the second law of motion, there is no conceptual distinction between inanimate and animate objects. An animate object such as a human also requires an external force to accelerate. For example, without the external force of friction, we cannot walk on the ground.
11. The objective concept of force in physics should not be confused with the subjective concept of the ‘feeling of force’. On a merry-go-around, all parts of our body are subject to an inward force, but we have a feeling of being pushed outward – the direction of impending motion.