YOLOv5实战交通标志识别
计算机视觉目标检测实战

YOLOv5实战交通标志识别 free download
计算机视觉目标检测实战
在无人驾驶中,交通标志识别是一项重要的任务。YOLOv5是目前流行的强悍的目标检测技术。本项目以中国交通标志数据集TT100K为训练对象,采用YOLOv5目标检测方法实现实时交通标志识别。
本课程的YOLOv5使用PyTorch版的ultralytics/yolov5,分别在Windows和Ubuntu系统上做中国交通标志识别的项目演示。具体项目过程包括:安装软件环境、安装YOLOv5、TT100K数据集及格式转换、训练集和测试集自动划分、修改配置文件、准备Weights&Biases训练可视化工具、训练网络模型、测试训练出的网络模型和性能统计。
本课程会讲述使用Python程序将TT100K数据集的格式转换成PASCAL VOC格式和YOLO格式的方法,并提供相应代码。
本课程还会首先介绍目标检测的基础知识,包括目标检测任务说明、常用数据集和性能指标。然后学习YOLOv5目标检测网络技术,包括YOLO目标检测系列技术发展史、YOLOv5网络架构和损失函数,以及YOLOv5的4.0、5.0和6.0更新。
本项目提供课程课件的下载和项目数据集的下载(百度网盘)
【相关课程】
本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括:
《YOLOv5目标检测实战:训练自己的数据集》
《YOLOv5目标检测:原理与源码解析》
《YOLOv5目标检测实战:Flask Web部署》
《YOLOv5目标检测实战:TensorRT加速部署》
《YOLOv5目标检测实战:Jetson Nano部署》
《YOLOv5实战口罩佩戴检测》
《YOLOv5实战交通标志识别》
《YOLOv5实战垃圾分类目标检测》
《YOLOv5+DeepSORT多目标跟踪与计数精讲》